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Uniform oscillations in spatially extended systems resonate with temporal periodic forcing within the Arnold

tongues of single forced oscillators. The Arnold tongues are wedge-like domains in the parameter space spanned

by the forcing amplitude and frequency, within which the oscillator’s frequency is locked to a fraction of the

forcing frequency. Spatial patterning can modify these domains. We describe here two pattern formation mech-

anisms affecting frequency locking at half the forcing frequency. The mechanisms are associated with phase-

front instabilities and a Turing-like instability of the rest state. Our studies combine experiments on the ruthe-

nium catalyzed light-sensitive Belousov-Zhabotinsky reaction forced by periodic illumination, and numerical

and analytical studies of two model systems, the FitzHugh-Nagumo (FHN) model and the complex Ginzburg-

Landau (CGL) equation, with additional terms describing periodic forcing.

PACS numbers: 05.45.Xt, 47.20.Ky, 47.54.+r

When a nonlinear oscillator is periodically forced by

some external source, its oscillations can adjust and en-

train to the forcing. The resulting dynamics is periodic

with an oscillation frequency being a rational fraction of

the forcing frequency. This entrainment, or frequency-

locking, phenomenon occurs over a range of forcing fre-

quencies and amplitudes, and is independent of the na-

ture of the oscillators, which can be mechanical, electri-

cal, chemical, or biological. Frequency locking exhibits

many universal features and has been carefully studied for

a variety of oscillator systems. Whether these universal

features persist under conditions in which the oscillations

are extended in space is the subject of our examination.

We use an oscillatory chemical system spread in a thin

gel layer, and two model systems, the FitzHugh Nagumo

model and the complex Ginzburg-Landau equation, a

generic equation for an oscillating field near the onset of

oscillations, to explore how spatial extent change the uni-

versal properties of frequency locking. Our studies show

that pattern formation can extend or reduce the range of

frequency locking. Two pattern formation mechanisms re-

sponsible for such changes are identified, a phase-front

instability designating a transition from standing-wave to

traveling-wave dynamics, and a Turing-like instability in-

ducing standing-wave patterns.

I. INTRODUCTION

Oscillatory dynamics have been observed in a variety of

dissipative non-equilibrium systems including lasers, con-

vective fluids, chemical reactions and cardiac tissues [1–4].

Among these systems, oscillating chemical reactions sub-

jected to time-periodic forcing, have been particularly in-

strumental in exploring pattern formation phenomena [5, 6].

Experiments on the Belousov-Zhabotinsky reaction demon-

strated a wide range of phenomena not normally seen in

a single pattern forming system. These include traveling

phase waves, Turing-like patterns, front instabilities leading

to fingering and vortex-pair nucleation, spiral turbulence, and

more [7, 8].

Oscillating systems often respond to periodic forcing by

adjusting their oscillation frequencies to rational fractions

of the forcing frequency [9]. This so called frequency-

locking phenomenon is accompanied by another significant

outcome of the periodic forcing - multiplicity of stable phase

states [4]. Each phase state represents spatially uniform

frequency-locked oscillations with a fixed oscillation phase.

A well studied example is the 2:1 resonance where the system

responds at exactly half the forcing frequency [10–12]. In this

case there are two stable phase states whose oscillation phases

differ by π. Along with the two uniform phase states, spatial

front structures bi-asymptotic to the two states exist. Trans-

verse instabilities and non-equilibrium Ising-Bloch (NIB) bi-

furcations of these front structures induce a variety of pattern

formation phenomena. The 2:1 resonance exhibits yet another

outcome of periodic forcing - a finite-wavenumber instability

leading to standing-wave Turing-like patterns.

In the parameter plane spanned by the forcing frequency

and forcing amplitude, spatially uniform resonant dynamics

are confined to wedge-like domains, the so called Arnold

Tongues [13, 14]. Are these resonance domains affected by

the appearance of stationary or time-dependent patterns? In

this paper we address this question in the context of the 2:1

resonance [15]. We review pattern formation mechanisms as-

sociated with front instabilities and Turing instabilities, and

examine the power spectra of the time signals for the result-

ing dynamics. Our studies involve experiments on the ruthe-

nium catalyzed light-sensitive [16, 17] Belousov-Zhabotinsky

(BZ) reaction, periodically forced in time with spatially uni-

form light, and numerical studies of two model systems, the

FitzHugh-Nagumo (FHN) model and the complex Ginzburg-
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Landau (CGL) equation, with additional terms describing pe-

riodic forcing.

II. THE BZ EXPERIMENT

The BZ reaction takes place in a reactor system containing

a thin porous Vycor glass membrane that is 0.4 mm thick and

22 mm in diameter. Typical chemical patterns observed in the

membrane have length scales of 0.5 mm or greater and are ef-

fectively two-dimensional. Reagents diffuse homogeneously

from continuously stirred reservoirs into the glass through its

two faces. We image the reaction by passing spatially homo-

geneous low-intensity light through the membrane, and mea-

sure the relative intensity of the transmitted light using a CCD

camera bandpass filtered at 451 nm, the peak absorption fre-

quency of the ruthenium catalyst. Regions of the membrane

that contain a high concentration of Ru(II) pass low intensity

light to the camera; regions that contain a low concentration

pass a higher intensity.

We periodically perturb the light-sensitive BZ oscillatory

reaction with light of different intensities and pulse frequen-

cies to investigate the existence, shape and extent of Arnold

tongues in a spatially extended oscillatory system [18]. We

find regions of resonance in the forcing parameter plane, see

Fig. 1, ordered in the Farey sequence of rational numbers, a

signature of the resonance domains studied by Arnold and

others. These experimental resonance domains also exhibit

fundamental differences –in particular, in the breadth of res-

onance in the frequency dimension, and in the extent of res-

onance observed in the amplitude dimension. The range of

resonance is both extended and diminished through pattern

formation. We explore various mechanisms in the context of

the 2:1 resonance domain.

III. MODEL SYSTEMS

A. The forced FitzHugh-Nagumo model

As a model for a periodically forced oscillatory system

we use the FitzHugh-Nagumo (FHN) reaction-diffusion equa-

tions modified to include time-periodic forcing

ut = u − u3 − v + ∇2u , (1a)

vt = ǫ [u − a1v − a0 + Γv sin(ωf t)] + δ∇2v . (1b)

Here u(x, y) and v(x, y) are scalar fields representing the

concentrations of activator and inhibitor types of chemical

reagents. The periodic forcing is assumed to be sinusoidal

with amplitude Γ and frequency ωf . The parameter ǫ is the

ratio of the characteristic time scales of u and v and δ is the

ratio of the diffusion rates of u and v.

In the absence of forcing, Γ = 0, Eqs. (1) have a spatially

uniform solution (u0, v0). This solution losses stability in

a Hopf bifurcation to uniform oscillations as the parameter

ǫ is decreased below a critical value ǫc. For the symmet-

ric model (a0 = 0) ǫc = 1/a1 and the Hopf frequency is

FIG. 1: The largest m:n tongues observed in the spatially extended

BZ system. Each symbol type represents a different m:n response

and a different spatial pattern. The patterns (points) within the solid

curves respond sub-harmonically with the forcing frequency. The

homogeneous oscillation frequency is f0 = 0.020 Hz. The chemical

conditions are given in [19].

ω0 =
√

1/a1 − 1. Beyond the Hopf bifurcation (i.e. below

ǫc) Eqs. (1) also support traveling phase waves.

Forcing the system at a frequency ωf ≈ 2ω0 either leads

to quasi-periodic oscillations or, when the forcing is strong

enough, to periodic oscillations at a frequency ω = ωf/2.

The latter case corresponds to 2:1 frequency-locked oscilla-

tions where the system adjusts its oscillation frequency to

ω = ωf/2 despite the fact that ω0 6= ωf/2. Fig. 2 shows a nu-

merical computation of the 2:1 resonance boundaries (Arnold

tongue) for uniform oscillations, above which frequency lock-

ing takes place.

B. The forced complex Ginzburg-Landau equation

Near the Hopf bifurcation, where the oscillation amplitude

is small, the u and v fields can be approximated by

u ≈ u0 +
[

Aei
ωf
2

t + c.c.
]

, (2a)

v ≈ v0 +
[

ζAei
ωf
2

t + c.c.
]

, (2b)

where A is a complex-valued amplitude, slowly varying in

space and time. For weak forcing, the amplitude A satisfies

the complex Ginzburg-Landau equation [20–23],

At = (µ+iν)A+(1+iα)∇2A−(1+iβ)|A|2A+γA∗ . (3)

The term A∗ in this equation is the complex conjugate of A
and describes the effect of the weak periodic forcing [20]. The

parameter µ represents the distance from the Hopf bifurcation,

ν = ω0 − ωf/2 is the detuning, α represents dispersion, β
represents nonlinear frequency correction, and γ represents

the forcing amplitude (proportional to Γ). Exact forms for
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FIG. 2: The resonance tongue boundaries for the 2:1 response of the

periodically forced FHN equations (1). The horizontal axis spans the

ratio of the forcing frequency ωf to the Hopf frequency, ω0 ≈ 0.83,

of the unforced system. Within the tongue boundaries the system os-

cillates at exactly half the forcing frequency. The green curve marked

as ΓNIB is the NIB boundary; above are stationary Ising patterns

and below are traveling Bloch wave patterns. The red circle marks

the parameter values of standing waves found outside the resonance

tongue. The parameters in the FHN equations are ǫ = 1, δ = 4.0,

a1 = 0.5, a0 = 0.1.

these parameters have been derived for specific models such

as the Brusselator and the FHN models [24, 25].

According to Eqs. (2) stable stationary solutions of the am-

plitude equation (3) describe frequency-locked or resonant os-

cillations. Uniform solutions of this kind exist for γ > γb

where [26]

γb =
|ν − µβ|
√

1 + β2
. (4)

In the next two sections we show that non-uniform solutions

may restrict or extend the boundaries of resonant response.

IV. NON-RESONANT FRONT DYNAMICS

A. The NIB bifurcation

Within the tongue boundaries, γb, of the 2:1 resonance,

front structures shifting the oscillation phase by π exist. We

use the forced CGL equation (3) to study the corresponding

front solutions. We recall that stationary solutions of Eq. (3)

correspond to resonant oscillations at ωf/2. Resonant oscilla-

tions are therefore destroyed when front dynamics set in; the

oscillation frequency at a given point changes when a moving

front is passing by. One mechanism which induces front dy-

namics is the non-equilibrium Ising-Bloch (NIB) bifurcation.

This is a pitchfork bifurcation in which a stationary ”Ising

front” loses stability to a pair of counter-propagating ”Bloch

fronts” as the forcing strength decreases below a threshold

γNIB . A NIB bifurcation diagram for Eq. (3) is shown in

Fig. 3. For the special case α = β = 0, the threshold is given
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FIG. 3: The nonequilibrium Ising-Bloch (NIB) bifurcation for the

forced CGL equation (3). For γ > γc there is a single stable

Ising front with zero speed. For γ < γc the Ising front is unsta-

ble and there are a pair of stable counter-propagating Bloch fronts.

The insets show the shape of Re(A) (solid blue curve) and Im(A)
(dashed green curve) across the front position. Parameters: µ = 1.0,

ν = 0.01, β = α = 0.0.

FIG. 4: Resonance tongue diagram for the FCGL equation (3). In-

side the tongue-shaped region bounded by the solid lines γ = |ν| (for

β = 0) uniform solutions are frequency-locked (resonant). Above

the dashed curve γ = γNIB resonant standing wave patterns (stripes,

labyrinths, and spots) are found while below γNIB non-resonant

Bloch-front spiral waves prevail.

by [27]

γNIB =
√

ν2 + (µ/3)2 . (5)

Figure 4 shows the tongue boundaries of the 2:1 resonance,

calculated from Eq. (4), and the NIB bifurcation threshold (5).

The NIB threshold splits the 2:1 resonance tongue into two

parts, a Bloch part, γb < γ < γNIB , and an Ising part,

γ > γNIB . When α is nonzero and positive (negative) the

NIB boundary (γ = γNIB) shifts to the right (left) tongue

boundary. The NIB boundary for the FHN model is shown in

Fig. 2.

In one space dimension, the NIB bifurcation threshold

designates a sharp transition from resonant stationary Ising

patterns at high forcing strengths, to non-resonant traveling
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FIG. 5: Formation of labyrinthine patterns by transverse front in-

stability. The interface between the two oscillation phases is trans-

versely unstable and small perturbations grow and finger. (top) Pat-

terns from a region of the BZ reactor, strobed at half the forcing

frequency. Blue (yellow) represents regions of low (high) Ru(III)

concentration. (bottom) Patterns in the FCGL equation (3). Blue

and yellow regions are different phases separated by π. Parameters:

γ = 2.02, µ = 1, ν = 2.0, α = 0.5, β = 0.

Bloch waves at low forcing strengths [12, 28]. In two space

dimensions the transition is not necessarily sharp; an interme-

diate range of turbulent dynamics can appear in the vicinity

of the NIB boundary when a transverse front instability devel-

ops.

B. Bloch-front turbulence

Ising and Bloch fronts in bistable systems can go through

transverse front instabilities [29]. Far into the Ising regime

transverse instabilities often lead to stationary labyrinthine

patterns through fingering and tip splitting. Close to the

NIB bifurcation they may induce turbulent states involving

repeated events of spiral-vortex nucleation and annihilation

(hereafter Bloch-front turbulence or BFT) [8].

In the context of forced oscillations, transverse instabili-

ties of Ising fronts have been studied both theoretically, us-

ing Eq. (3) [26] and in experiments on the BZ reaction [30].

Fig. 5a shows experimental results demonstrating a transverse

front instability. Fig. 5b shows a numerical demonstration of

a transverse instability and the fingering and tip splitting pro-

cesses that lead to a resonant labyrinthine pattern in the Ising

regime far from the NIB bifurcation. Another typical reso-

nant behavior in this parameter regime is the appearance of

localized spot-like structures close to the transverse instabil-

ity threshold [31, 32].

As the NIB bifurcation is approached the dynamics change;

instead of fingering and tip splitting, growing transverse per-

turbations now induce vortex nucleation followed by a non-

resonant state of Bloch-front turbulence as Figs. 6 and 7 show.

Far into the Bloch regime stable non-resonant spiral waves

prevail. Figure 8(a)-(c) summarizes the qualitative spatio-

temporal behaviors as the NIB bifurcation is traversed. For

comparison we show in Fig. 8(d)-(f) the corresponding behav-

iors in the absence of a transverse instability. In that case the

NIB bifurcation designates a sharp transition between non-
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FIG. 6: Spiral vortex nucleation in the BZ system. Frames (a)-(c)

show the phase of the oscillations at near half the driving frequency

at three different times t = 100s, 300s, 1700s [33]. Frames (d)-(f)

show the position of the vortices along the front at the corresponding

times. (a) The initial nearly planar front is unstable to transverse

perturbations. (b) Vortices form in pairs along the front. (c) Vortices

eventually fill up the entire system. The figures show a 19.1 mm ×
19.1 mm (200 × 200 pixel) region of the BZ system with the light

forcing intensity I = 165 W/m2
, uniform oscillation frequency of

f0 = 0.02 Hz, and forcing frequency of ff = 0.06 Hz. Chemical

conditions are given in Ref. [34].

resonant traveling waves below γNIB to resonant large do-

main patterns above γNIB . Approaching the NIB bifurcation

from below leads to a spiral wave with a diverging pitch and

vanishing rotation speed.

C. Kinematic equations for Bloch spirals and vortex

nucleation

Bloch spiral waves and spontaneous spiral-vortex nucle-

ation leading to BFT can be studied using a kinematic ap-

proach for the dynamics of curved fronts. The normal form

equations for a curved front in the vicinity of the NIB bifurca-

tion are [35]:

dκ

dt
= −(κ2 +

∂2

∂s2
)Cn , (6a)

dC0

dt
= (anib − a)C0 − bC3

0
+ cκ +

∂2C0

∂s2
, (6b)
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FIG. 7: Spiral-vortex nucleation and formation of Bloch-front tur-

bulence in a numerical solution of the CGL equation (3). Frames

(a)-(c) show the phase arg(A) of the solution at three different times

t=180,800,8000. Perturbations on the unstable front solution grow

and pairs of vortices form along the front. Frames (d)-(f) show the

same data but with the vortices shown as solid dots along the front.

The front is defined as Re(A) = 0 and the vortex positions are where

in addition Im(A) == 0. Parameters used were µ = 0.5, ν = 0.15,

α = 0.3, β = 0, γ = 0.2 on a domain size of [x, y] = [256, 256]
with no-flux boundary conditions.

where Cn, the normal front velocity, is related to C0, the ve-

locity of a planar front, through the relation, Cn = c0 − Dκ,

s is arclength, and d
dt

is the total time derivative: d
dt

=
∂
∂t

+ ds
dt

∂
∂s

. The arclength changes in time, when the front

is curved and moving, according to ds
dt

=
∫ s

0
κCnds′.

Equations (6) capture the NIB bifurcation for a planar front

as the bifurcation parameter a crosses the threshold anib; an

Ising front solution, (C0, κ) = (0, 0), loses stability and two

stable Bloch front solutions, (C0, κ) = (±
√

anib − a)/b, 0),
appear. In the Bloch regime (a < anib) Eqs. (6) admit a kink

solution bi-asymptotic (as |s| → ∞) to the two Bloch front so-

lutions as Fig. 9(a) shows. In the two-dimensional x−y plane

this kink solution describes a rotating spiral wave [Fig. 9(b)].

Figures 10 and 11 show the dynamics of a closed front loop

that contains a vortex pair in the Bloch regime (Fig. 10) and

in the Ising regime (Fig. 11). The simulations were done on

a version of Eqs. (6) suitable for describing the dynamics

of closed loops [36]. In the Bloch regime the two vortices

converge to a pair of counter-rotating spiral waves, while in

FIG. 8: Contrasting pattern formation phenomena in the CGL equa-

tion (3) as the parameters are varied across the NIB bifurcation. Far

below the NIB threshold stable Bloch spirals prevail [panels (c) and

(f)] . As the forcing amplitude is increased two scenarios are pos-

sible, depending on whether the Bloch and Ising fronts are unsta-

ble (left column) or stable (right column) to transverse perturbations.

When a transverse front instability exists a state of Bloch-front tur-

bulence first appears (b), followed by labyrinthine Ising patterns (a).

When the fronts are transversly stable a sharp transition from Bloch

spirals to large-domain Ising patterns (d) takes place across the NIB

bifurcation, with the Bloch-spiral pitch increasing indefinitely as the

NIB threshold is approached (e). Parameters: µ = 0.5,α = 0.35,

β = 0 and (a) Ising Labyrinth: ν = 0.38, γ = 0.4; (b) BFT:

ν = 0.14, γ = 0.2; (c) Bloch spiral: ν = 0.14, γ = 0.15; (d)

Ising large domains: ν = 0.15, γ = 0.3; (e) Bloch spiral near

NIB:ν = 0.08, γ = 0.15; (f) Bloch spiral: ν = 0.14, γ = 0.15; The

integration domain was [x, y] = [256, 256] and no-flux boundary

conditions were used.

the Ising regime mutual vortex annihilation leads to a circu-

lar Ising front whose speed becomes vanishingly small as it

expand outwards.

Equations (6) also imply that Bloch fronts close to the

NIB bifurcation are unstable to transverse perturbations pro-

vided c/D > 0 [37]. To see this we study the sta-

bility of planar Bloch fronts to perturbations of the form

(δC0, δκ) exp (σt + iQs) + c.c. . Inserting the perturbed

forms for C0 and κ in Eqs. (6) gives the neutral stability

(σ = 0) relation

atr(Q) = anib −
c

2D
+ Q2 . (7)
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FIG. 9: Spiral wave solution of the kinematic equations (6). (a) The

normal front velocity C0 and curvature κ have a kink solution bi-

asymptotic to the two Bloch fronts as the arclength |s| → ∞. (b) In

the x − y (laboratory) coordinate frame the kink solution is a spiral

wave. Parameters: a = 5.99, anib = 6.0, b = 0.17, c = 6.0.
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FIG. 10: Formation of a pair of spiral waves in the Bloch regime. (a)

Solutions to the kinematic equations for closed loops [36] at t = 0
(bottom), t = 2 (middle), and t = 4 (top). The variable σ is the

ratio of the arclength to the total loop length. (b) The corresponding

solutions in the x − y plane. Parameters: ǫ = 0.035, δ = 1.1,

a0 = 0, a1 = 2, d = 0.

The first mode to grow is the zero mode, Q = 0. Within

the range anib − c
2D

< a < anib Bloch fronts are unstable to

transverse perturbations. As a approaches the NIB bifurcation

threshold, anib, modes with higher and higher wave-numbers

grow. When the curvature perturbations produced by these

modes are sufficiently large, local transitions between the two

Bloch fronts are induced and vortex nucleation events take

place [38] as demonstrated in Fig. 12.
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FIG. 11: Formation of an expanding circular loop in the Ising regime.

(a) Solutions to the kinematic for closed loops [36]. at t = 0 (bot-

tom), t = 3 (middle), and t = 15 (top). (b) The corresponding solu-

tions in the x − y plane. Parameters: ǫ = 0.14, δ = 1.1, a0 = 0.1,

a1 = 2, d = 0.
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FIG. 12: Nucleation of a spiral-vortex pair in the kinematic equa-

tions (6). (a),(d) A small perturbation in the curvature grows. (b),(e)

A portion of the domain reverses direction and a spiral-vortex pair

nucleates along the front. (c),(f) A pair of rotating spiral-waves

forms. Parameters: a = 5.97, anib = 6.0, b = 0.165, c = 6.03.
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FIG. 13: Resonant standing waves invading non-resonant quasi-

periodic oscillations. (top) Patterns from a region of the BZ reactor,

strobed at half the forcing frequency. Blue (yellow) represents re-

gions of low (high) Ru(III) concentration. (bottom) Patterns in the

FCGL equation (3). Blue and yellow regions are different phases

separated by π. Parameters: γ = 1.98, µ = 1, ν = 2.0, α = 0.5,

β = 0.

V. RESONANCE INVASION

The NIB bifurcation is a mechanism by which resonant

standing-wave patterns destabilize to non-resonant traveling

waves. Figure 13 shows an experimental demonstration of an

opposite behavior where non-resonant traveling waves are dis-

placed by resonant standing-wave patterns. The mechanism

of this behavior is associated with the appearance of a Turing

mode [39] and has been studied by Yochelis et al. [26, 40].

Consider the dispersion relation associated with the zero state

of Eq. 3 [30]:

σ = µ − k2 +
√

γ2 − (ν − αk2)2 . (8)

An examination of this relation reveals a codimension two

point,

µ = 0, γ = γc = ν/
√

1 + α2 , (9)

where the Hopf bifurcation to uniform oscillations coincides

with a Turing instability [30], as Fig. 14 shows. The Hopf fre-

quency and the Turing wavenumber are given by ω0 = να/ρ

and k2

0
= να/ρ2, respectively, where ρ =

√
1 + α2. In the

vicinity of the codimension 2 point, where |γ−γc| ∼ µ ≪ γc,

solutions of Eq. (3) can be approximated as

(

Re A
Im A

)

=
{

e0B0e
iω0t + ekBkeik0x + c.c.

}

+ · · · , (10)

where the complex amplitudes B0(µt) and Bk(µt) in Eq. (10)

are of order
√

µ, and describe slow uniform modulations of

the (relatively) fast oscillations associated with the Hopf mode

and of the fast spatial variations associated with the Turing

mode. We refer the reader to Yochelis et al. [26] for the deriva-

tion of the normal form equations for the amplitudes B0 and

Bk, the so called Hopf-Turing amplitude equations. These

equations have been studied in various contexts [41–47] and

are known to have a parameter regime where stable uniform

oscillations coexist with a stable Turing pattern.

ck
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e
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FIG. 14: The growth rate (real part of σ) of perturbations from the

A = 0 state of Eq. (3) at the codimension 2 point, µ = 0, γ = γc.

Two modes become marginal at this point, a Hopf zero-k mode and

a Turing finite-k mode. Parameters: µ = 0, ν = 2.0, α = 0.5,

γ = γc ≈ 1.8.

In the present context, the uniform oscillations states per-

tain to non-resonant quasiperiodic oscillations, whereas the

Turing-pattern state describes resonant standing waves. The

range of bistability occurs outside the 2:1 resonance tongue

and is bounded on one side by the tongue boundary. More-

over, close to the tongue boundary the Turing-pattern state in-

vades the uniform-oscillations state as shown in Fig. 13(b).

These findings explain the experimental observations shown

in Fig. 13(a). Indeed, the displacement of traveling-wave state

by the resonant standing-wave state has been observed in the

vicinity of the tongue boundary.

The phenomenon of resonance invasion presented above

has been predicted using an amplitude equation approach [Eq.

(3)] [26, 30]. To test this prediction we studied resonance in-

vasion in the FHN model (1). Figure 15(top) shows snapshots

of a standing-wave pattern invading uniform oscillations out-

side the tongue boundary (parameters at solid circle in Fig.

2). Typical timeseries in the standing-wave and uniform-

oscillations domains are shown in the middle part of Fig. 15,

and the corresponding power spectra in the bottom part. While

the uniform oscillations are quasi-perioic and unlocked to the

forcing, the standing waves are clearly resonant, locked to half

the forcing frequency.

VI. CONCLUSION

We described here joint theoretical and experimental stud-

ies of pattern formation mechanisms that affect the resonant

response of oscillatory systems to periodic forcing. We fo-

cused on the 2:1 resonance case and highlighted two mecha-

nisms. The first is associated with the NIB front bifurcation

within the resonance tongue of uniform oscillations. The bi-

furcation restricts the range of resonant non-uniform oscilla-

tions to the Ising regime where phase fronts are stationary.

The NIB bifurcation designates a sharp transition from non-

resonant traveling waves to resonant standing waves when the

phase fronts are transversely stable. In the presence of a trans-



8

FIG. 15: A resonant pattern invading an unlocked oscillatory state in

the forced FHN model (1). The parameters correspond to the point

indicated by the solid circle on the tongue diagram in Fig. 2 (ωf =
1.3, Γ = 0.4. (top) Two snapshots in time of the pattern phase. The

left half of the domain is resonant and the right half is unlocked with

uniform oscillations. (middle) Timeseries for the two points shown

in the top figure. The timeseries for the point at the black circle

is not locked to the forcing (shown in the small sine wave). The

timeseries at the red square is locked to the forcing and shows one full

wavelength response for every two forcing wavelengths. (bottom)

The power spectra of the two timeseries showing that the resonant

part of the pattern is locked to 1/2 the forcing frequency as indicated

by the vertical line.

verse front instability, an intermediate range of Bloch-front

turbulence further restricts the range of resonant oscillations.

A second mechanism affecting resonant response is associ-

ated with the appearance of a finite-wavenumber or Turing-

like instability of the zero state. The instability is induced by

the periodic forcing and can lead to the coexistence of stable

non-resonant oscillations with stable resonant standing waves.

Invasion of the latter state into the former leads to resonant

response outside the Arnold tongue boundaries of uniform os-

cillations.

Equivalent mechanisms may work in other resonance

tongues. Theoretical studies of the 4:1 resonance [22, 23], for

example, revealed a front instability that designates a transi-

tion from resonant two-phase standing waves at high forcing

strengths to non-resonant four-phase traveling waves at low

forcing strengths. Like the NIB bifurcation, this front insta-

bility restricts the parameter range of non-uniform resonant

oscillations within the 4:1 tongue.
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